On 01/05/11 17:31, Peter Grandi wrote:
[ ... ]
* Can Linux MD do "abbreviated" readmodifywrite RAID6
updates like for RAID5? [ ... ]
No. (patches welcome).
Ahhhm, but let me dig a bit deeper, even if it may be implied in
the answer: would it be *possible*?
That is, is the double parity scheme used in MS such that it is
possible to "subtract" the old content of a page and "add" the
new content of that page to both parity pages?
If I've understood the maths correctly, then yes it would be possible.
But it would involve more calculations, and it is difficult to see where
the best balance lies between cpu demands and IO demands. In general,
calculating the Q parity block for raid6 is processorintensive 
there's a fair amount of optimisation done in the normal calculations to
keep it reasonable.
Basically, the first parity P is a simple calculation:
P = D_0 + D_1 + .. + D_n1
But Q is more difficult:
Q = D_0 + g.D_1 + g².D_2 + ... + g^(n1).D_n1
where "plus" is xor, "times" is a weird function calculated over a
G(2^8) field, and g is a generator for that field.
If you want to replace D_i, then you can calculate:
P(new) = P(old) + D_i(old) + D_i(new)
Q(new) = Q(old) + g^i.(D_i(old) + D_i(new))
This means multiplying by g_i for whichever block i is being replaced.
The generator and multiply operation are picked to make it relatively
fast and easy to multiply by g, especially if you've got a processor
that has vector operations (as most powerful cpus do). This means that
the original Q calculation is fairly efficient. But to do general
multiplications by g_i is more effort, and will typically involve
cachekilling lookup tables or multiple steps.
It is probably reasonable to say that when md raid first implemented
raid6, it made little sense to do these abbreviated parity calculations.
But as processors have got faster (and wider, with more cores) while
disk throughput has made slower progress, it's maybe a different
balance. So it's probably both possible and practical to do these
calculations. All it needs is someone to spend the time writing the
code  and lots of people willing to test it.
